您好,欢迎访问这里是乐天堂fun88称官网!

全国咨询热线+86 0000 88888
乐天堂·体育(FUN88)官方app下载-ios/安卓/手机版

新闻动态

NEWS CENTER
乐天堂•体育(FUN88)官方app下载气动控制阀的定义分类及工作原理详解
发布时间:2024-09-05 16:31浏览次数:

  fun88乐天堂(APP)官方网站fun88乐天堂(APP)官方网站fun88乐天堂(APP)官方网站气动控制阀的定义,分类及工作原理详解 ———————————————————————————————— 作者: ———————————————————————————————— 日期: 气动控制阀(Pneumatic control valves) 气动控制阀是指在气动系统中控制气流的压力、流量和流动方向,并保证气动执行元件或机构正常工作的各类气动元件。气动控制阀的构造可分解成阀体(包含阀座和阀孔等)和阀心两局部,根据两者的相对位置,有常闭型和常开型两种。阀从构造上可以分为:截止式、滑柱式和滑板式三类阀。 一、气动控制阀的分类 气动控制阀是指在气动系统中控制气流的压力、流量和流动方向,并保证气动执行元件或机构正常工作的各类气动元件。控制和调节压缩空气压力的元件称为压力控制阀。国内知名的生产厂家有上海权工阀门设备和湖南新兴水电设备。其公司是机械工业部、化工部、中国化工装备总公司定点管理生产企业。其产品在业内有一定的价格优势和技术优势 控制和调节压缩空气流量的元件称为流量控制阀。改变和控制气流流动方向的元件称为方向控制阀。 除上述三类控制阀外,还有能实现一定逻辑功能的逻辑元件,包括元件内部无可动部件的射流元件和有可动部件的气动逻辑元件。在构造原理上,逻辑元件根本上和方向控制阀一样,仅仅是体积和通径较小,一般用来实现信号的逻辑运算功能。近年来,随着气动元件的小型化以及PLC控制在气动系统中的大量应用,气动逻辑元件的应用范围正在逐渐减小。 从控制方式来分,气动控制可分为断续控制和连续控制两类。在断续控制系统中,通常要用压力控制阀、流量控制阀和方向控制阀来实现程序动作;连续控制系统中,除了要用压力、流量控制阀外,还要采用伺服、比例控制阀等,以便对系统进展连续控制。气动控制阀分类如图4.1。 二、气动控制阀和液压阀的比拟 (一) 使用的能源不同 气动元件和装置可采用空压站集中供气的方法,根据使用要求和控制点的不同来调节各自减压阀的工作压力。液压阀都设有回油管路,便于油箱收集用过的液压油。气动控制阀可以通过排气口直接把压缩空气向大气排放。 (二) 对泄漏的要求不同 液压阀对向外的泄漏要求严格,而对元件内部的少量泄漏却是允许的。对气动控制阀来说,除间隙密封的阀外,原那么上不允许内部泄漏。气动阀的内部泄漏有导致事故的危险。 对气动管道来说,允许有少许泄漏;而液压管道的泄漏将造成系统压力下降和对环境的污染。 (三) 对润滑的要求不同 液压系统的工作介质为液压油,液压阀不存在对润滑的要求;气动系统的工作介质为空气,空气无润滑性,因此许多气动阀需要油雾润滑。阀的零件应选择不易受水腐蚀的材料,或者采取必要的防锈措施。 (四) 压力范围不同 气动阀的工作压力范围比液压阀低。气动阀的工作压力通常为10bar以内,少数可到达40bar以内。但液压阀的工作压力都很高(通常在50Mpa以内)。假设气动阀在超过最高容许压力下使用。往往会发生严重事故。 (五) 使用特点不同 一般气动阀比液压阀构造紧凑、重量轻,易于集成安装,阀的工作频率高、使用寿命长。气动阀正向低功率、小型化方向开展,已出现功率只有0.5W的低功率电磁阀。可与微机和PLC可编程控制器直接连接,也可与电子器件一起安装在印刷线路板上,通过标准板接通气电回路,省却了大量配线,适用于气开工业机械手、复杂的生产制造装配线等场合。 三、 气动控制阀的构造特性 气动控制阀的构造可分解成阀体(包含阀座和阀孔等)和阀心两局部,根据两者的相对位置,有常闭型和常开型两种。阀从构造上可以分为:截止式、滑柱式和滑板式三类阀。 (一)截止式阀的构造及特性 截止式阀的阀心沿着阀座的轴向移动,控制进气和排气。图4.2所示为二通截止式阀的根本构造。图4.2a中,在阀的P口输入工作气压后,阀芯在弹簧和气体压力作用下紧压在阀座上,压缩空气不能从A口流出;图4.2b为阀杆受到向下的作用力后,阀芯向下移动,脱离阀座,压缩空气就能从P口流向A口输出。这就是截止式阀的切换原理。 图4.3所示的阀为常通型构造。图4.3a为初始状态,与图4.2a相反,阀心在弹簧力作用 下离开阀座,压缩空气从P口流向A口输出。图4.3b为工作状态,阀杆在向上的力作用下,阀心紧压在阀座上关闭阀口,流道被关断,A口没有压缩空气流出。 气动控制阀是控制、调节压缩空气的流动方向、压力和流量的气动元件,利用它们可以组成各种气动回路,使气动执行元件按设计要求正常工作。 (Common pneumatic control valves) 和液压控制阀类似,常用的根本气动控制阀分为:气动方向控制阀、气动压力控制阀和气动流量控制阀。此外还有通过改变气流方向和通断以实现各种逻辑功能的气动逻辑元件。 13.1.1 气动方向控制阀(Pneumatic direction control valves) 气动方向控制阀是用来控制压缩空气的流动方向和气流通、断的气动元件。 气动方向控制阀的分类 气动方向控制阀和液压系统的方向控制阀类似,也分为单向阀和换向阀,其分类方法也根本一样。但由于气压传动具有自己独有的特点,气动方向控制阀可按阀芯构造、控制方式等进展分类。 1.截止式方向控制阀 截止式方向控制阀的截止阀口和阀芯的关系如图13.1,图中用箭头表示了阀口开启后气流的流动方向。 分析截止式方向控制阀具有如下特点: 1〕用很小的移动量就可以使阀完全开启,阀的流通能力强,便于设计成构造紧凑的大口径阀。 2〕截止阀一般采用软质材料〔如橡胶等〕密封,当阀门关闭后始终存在背压,因此,密封性好、泄漏量小、勿须借助弹簧也能关闭。 3〕因背压的存在,所以换向力较大,冲击力也较大。不适合用于高灵敏度的场合。 4〕比滑柱式方向控制阀阻力损失小,抗粉尘能力强,对气体的过滤精度要求不高。 2. 滑柱式方向控制阀 滑柱式气动方向控制阀工作原理与滑阀式液压控制元件类似,这里不具体说明。 滑柱式方向控制阀的特点: 1〕阀芯较截止式长,增加了阀的轴向尺寸,对动态性能有不利影响,大通径的阀一般不易采用滑柱式构造; 2〕由于构造的对称性,阀芯处在静止状态时,气压对阀芯的轴向作用力保持平衡,容易设计成气动控制中比拟常用的具有记忆功能的阀; 3〕换向时由于不受截止式密封构造所具有的背压阻力,换向力较小; 4〕通用性强。同一基型阀只要调换少数零件便可改变成不同控制方式、不同通路的阀;同一只阀,改变接收方式,可以做多种阀使用。 5〕阀芯对介质的杂质比拟敏感,需对气动系统进展严格的过滤和润滑,对系统的维护要求高。 常用的气动方向控制阀 1. 单向型方向控制阀 1〕单向阀 单向阀的构造原理如图13.2。其工作原理和图形符号和液压单向阀一致,只不过气动单向阀的阀芯和阀座之间是靠密封垫密封的。 2〕或门型梭阀 如图13.3为或门型梭阀的构造原理。其工作特点是不管P1和P2哪条通路单独通气,都能导通其与A的通路;当P1和P2同时通气时,哪端压力高,A就和哪端相通,另一端关闭,其逻辑关系为“或〞,图形符号如图。 3〕与门型梭阀 与门型梭阀又称双压阀,构造原理如图13.4所示。其工作特点是只有P1和P2同时供气,A口才有输出;当P1或P2单独通气时,阀芯就被推至相对端,封闭截止型阀口;当P1和P2同时通气时,哪端压力低,A口就和哪端相通,另一端关闭,其逻辑关系为“与〞,图形符号如图。 4〕快速排气阀 快速排气阀是为加快气体排放速度而采用的气压控制阀。 如图13.5为快速排气阀的构造原理。当气体从P通入时,气体的压力使唇型密封圈右移封闭快速排气口e,并压缩密封圈的唇边,导通P口和A口,当P口没有压缩空气时,密封圈的唇边张开,封闭A和P通道,A口气体的压力使唇型密封圈左移,A、T通过排气通道e连通而快速排气〔一般排到大气中〕。 2. 换向型方向控制阀 换向型方向控制阀〔简称换向阀〕,是通过改变气流通道而使气体流动方向发生变化,从而到达改变气动执行元件运动方向的目的。它包括气压控制换向阀、电磁控制换向阀、机械控制换向阀、人力控制换向阀和时间控制换向阀等。 〔1〕气压控制换向阀 气压控制换向阀是利用气体压力使主阀芯和阀体发生相对运动而改变气体流向的元件。 1〕气压控制换向阀的分类 按控制方式不同分为加压控制、卸压控制和差压控制三种。加压控制是指所加的控制信号压力是逐渐上升的,当气压增加到阀芯的动作压力时,主阀便换向;卸压控制是指所加的气控信号压力是逐渐减小的,当减小到某一压力值时,主阀换向;差压控制是使主阀芯在两端压力差的作用下换向。 气控换向阀按主阀构造不同,又可分为截止式和滑阀式两种主要型式。滑阀式气控换向阀的构造和工作原理与液动换向阀根本一样。在此只介绍截止式换向阀。 2〕截止式方向控制阀 图13.6所示为二位三通单气控截止式换向阀的构造原理。图示为 K口没有控制信号时的状态,阀芯4在弹簧2与P腔气压作用下右移,使P与A断开,A与T导通;当 K口有控制信号时,推动活塞5通过阀芯压缩弹簧翻开P与A通道,封闭A与T通道。图示为常断型阀,如果P、T换接那么成为常通型。这里,换向阀芯换位采用的是加压的方法,所以称为加压控制换向阀。相反情况那么为减压控制换向阀。 (2)电磁控制方向控制阀 1) 单电控换向阀 由一个电磁铁的衔铁推动换向阀芯移位的阀称为单电控换向阀。单电控换向阀有单电控直动换向阀和单电控先导换向阀两种。 单电控直动式电磁换向阀的工作原理。靠电磁铁和弹簧的相互作用使阀芯换位实现换向。图示为电磁铁断电状态,弹簧的作用导通A、T通道,封闭P口通道;电磁铁通电时,压缩弹簧导通P、A通道,封闭T口通道。 为单电控先导换向阀的工作原理。它是用单电控直动换向阀作为气控主换向阀的先导阀来工作的。图示为断电状态,气控主换向阀在弹簧力的作用下,封闭P口乐天堂•体育(FUN88)官方app下载,导通A、T通道;领先导阀带电时,电磁力推动先导阀芯下移,控制压力P1推动主阀芯右移,导通P、A通道,封闭T通道。类似于电液换向阀,电控先导换向阀适用于较大通径的场合。 2) 双电控电磁换向阀 由两个电磁铁的衔铁推动换向阀芯移位的阀称为双电控换向阀。双电控换向阀有双电控直动换向阀和双电控先导换向阀两种。 为双电控直动二位五通换向阀的工作原理。图示为左侧电磁铁通电的工作状态。其工作原理显而易见,不再说明。注意,这里的两个电磁铁不能同时通电。这种换向阀具有记忆功能,即当左侧的电磁铁通电后,换向阀芯处在右端位置,当左侧电磁铁断电而右侧电磁铁没有通电前阀芯仍然保持在右端位置控先导换向阀的工作原理,图示为左侧先导阀电磁铁通电状态。工作原理与单电控先导换向阀类似,不再表达。 (3)机械控制或人力控制方向换向阀 通过机械或人力控制使换向阀芯换位的换向阀有机动换向阀和手动〔脚踏〕换向阀等。 它们的换向原理很简单和滚轮可通过式杠杆滚轮控制的行程换向阀,当机械撞块向右运动时,压下滚轮,实现换向动作;当撞块通过滚轮后,阀芯在弹簧力的作用下回复;撞块回程时,由于滚轮的头部可弯折,阀芯不换向。此阀由A口输出脉冲信号,常被用来排除回路中的障碍信号,简化设计回路。 〔4〕时间控制换向阀 时间换向阀是通过气容或气阻的作用对阀的换向时间进展控制的换向阀。包括延时阀和脉冲阀。 1〕延时阀 如图13.14为二位三通气动延时阀的构造原理。由延时控制局部和主阀组成。常态时,弹簧的作用使阀芯2处在左端位置。当从K口通入气控信号时,气体通过可调节流阀4〔气阻〕使气容腔1充气,当气容内的压力到达一定值时,通过阀芯压缩弹簧使阀芯向右动作,换向阀换向; 气控信号消失后,气容中的气体通过单向阀快速卸压,当压力降到某值时,阀芯左移,换向阀换向。 2〕脉冲阀 脉冲阀是靠气流经过气阻、气容的延时作用,使输入的长信号变成脉冲信号输出的阀。图13.15为一滑阀式脉冲阀的构造原理。P口有输入信号时,由于阀芯上腔气容中压力较低,并且阀芯中心阻尼小孔很小,所以阀芯向上移动,使P、A相通,A口有信号输出,同时从阀芯中心阻尼小孔不断给上部气容充气,因为阀芯的上、下端作用面积不等,气容中的压力上升到达某值时,阀芯下降封闭 P、A通道,A、T相通,A口没有信号输出。这样,P口的连续信号就变成A口输出的脉冲信号。 13.1.2 气动压力控制阀(Pneumatic pressure control valves) 气动压力控制阀在气动系统中主要起调节、降低或稳定气源压力、控制执行元件的动作顺序、保证系统的工作平安等作用。 13.1.2.1 气动压力控制阀的分类 气动压力控制阀分为减压阀〔调压阀〕、顺序阀、平安阀等。 13.1.2.2 常用的气动压力控制阀 1.减压阀 减压阀是气动系统中的压力调节元件。气动系统的压缩空气一般是由压缩机将空气压缩,储存在储气罐内,然后经管路输送给气动装置使用,储气罐的压力一般比设备实际需要的压力高,并且压力波动也较大,在一般情况下,需采用减压阀来得到压力较低并且稳定的供气。 减压阀按调节压力的方式分为直动式和先导式两种。 〔1〕直动式减压阀 图13.16为直动式减压阀的构造原理。输入气流经P1 进入阀体,经阀口2节流减压后从P2口输出,输出口的压力经过阻尼孔4进入膜片室,在膜片上产生向上的推力,当出口的压力P2瞬时增高时,作用在膜片上向上的作用力增大,有局部气流经溢流口和排气口排出,同时减压阀芯在复位弹簧1的作用下向上运动,关小节流减压口,使出口压力降低;相反情况不难理解。调解手轮8就可以调节减压阀的输出压力。 采用两个弹簧调压的作用是调节的压力更稳定。 〔2〕先导式减压阀 某先导式减压阀的构造原理图。与直动式减压阀相比,该阀增加了由喷嘴10、挡板11、固定节流孔5及气室所组成的喷嘴挡板放大环节。当喷嘴与挡板之间的距离发生微小变化时,就会使气室中的压力发生很明显的变化,从而引起膜片6有较大的位移,去控制阀芯4的上下移动,使进气阀口3开大或关小,提高了对阀芯控制的灵敏度,也就提高了阀的稳压精度。 〔3〕定值器 定值器是一种高精度的减压阀,主要用于压力定值。图13.18为定值器的工作原理图。它由三局部组成:一是直动式减压阀的主阀局部;二是恒压降装置,相当于一定差值减压阀,主要作用是使喷嘴得到稳定的气源流量;三是喷嘴挡板装置和调压局部,起调压和压力放大作用,利用被它放大了的气压去控制主阀局部。由于定值器具有调定、比拟和放大的功能,因而稳压精度高。 定值器处于非工作状态时,由气源输入的压缩空气进人A室和E室。主阀芯2在弹簧1和气源压力作用下压在截止阀座3上,使A室与B室断开。进人E室的气流经阀口〔又称为活门7〕进至F室,再通过节流孔5降压后,分别进人G室和D室。由于这时尚未对膜片12加力,挡板5与喷嘴4之间的间距较大,气体从喷嘴10流出时的气流阻力较小,C室及D室的气压较低,膜片8及4皆保持原始位置。进人H室的微量气体主要局部经B室通过溢流口从排气口排出;另有一局部从输出口排空。此时输出口输出压力近似为零,由喷嘴流出而排空的微量气体是维持喷嘴挡板装置工作所必须的,因其为无功耗气量,所以希望其耗气量越小越好。 定值器处于工作状态时,转动手柄14压下弹簧13并推动膜片12连同挡板11一同下移,挡板11与喷嘴10的间距缩小,气流阻力增加,使C室和D室的气压升高。膜片4在D室气压的作用下下移,将溢流阀口关闭,并向下推动主阀芯2,翻开阀口,压缩空气即经 B室和H室由输出口输出。与此同时,H室压力上升并反响到膜片12上,当膜片12所受的反响作用力与弹簧力平衡时,定值器便输出一定压力的气体。 当输入的压力发生波动,如压力上升,假设活门、进气阀芯2的开度不变,那么B、F、H室气压瞬时增高,使膜片12上移,导致挡板11与喷嘴10之间的间距加大,C室和D室的气压下降。由于B室压力增高,D室压力下降,膜片4在压差的作用下向上移动,使主阀口减小,输出压力下降,直到稳定在调定压力上。此外,在输入压力上升时,E室压力和F室瞬时压力也上升,膜片8在上下压差的作用下上移,关小活门口7。由于节流作用加强,F室气压下降,始终保持节流孔5的前后压差恒定,故通过节流孔门的气体流量不变,使喷嘴挡板的灵敏度得到提高。当输入压力降低时,B室和H室的压力瞬时下降,膜片12连同挡板11由于受力平衡破坏而下移乐天堂•体育(FUN88)官方app下载,喷嘴10与挡板11间的间距减小,C室和D室压力上升,膜片8和4下移。膜片4的下移使主阀口开度加大,B室及H室气压上升,直到与调定压力平衡为止。而膜片8下移,开大活门口,F室气压上升,始终保持节流孔5前后压差恒定。 同理,当输出压力波动时,将与输入压力波动时得到同样的调节。 由于定值器利用输出压力的反响作用和喷嘴挡板的放大作用控制主阀,使其能对较小的压力变化作出反响,从而使输出压力得到及时调节,保持出口压力根本稳定,定值稳压精度较高。 2.顺序阀 顺序阀是根据入口处压力的大小控制阀口启闭的阀。目前应用较多的是单向顺序阀。如图13.19为单向顺序阀的构造原理。当气流从P1口进入时,单向阀反向关闭,压力到达顺序阀弹簧6调定值时,阀芯上移,翻开P、A通道,实现顺序翻开;当气流从P2口流入时,气流顶开弹簧刚度很小的单向阀,翻开P2、P1通道,实现单向阀的功能。 3.平安阀 气动平安阀在系统中起平安保护作用。当系统压力超过规定值时,翻开平安阀保证系统的平安。平安阀在气动系统中又称溢流阀。 a0b1为气动控制先导式平安阀的构造原理图。它是靠作用在膜片上的控制口气体的压力和进气口作用在截止阀口的压力进展比拟来进展工作的。 13.1.3 气动流量控制阀(Pneumatic flow control valves) 流量控制阀是通过改变阀的通流面积来实现流量控制的元件。流量控制阀包括节流阀、单向节流阀、排气节流阀、柔性节流阀等。 1.节流阀 节流阀原理很简单。节流口的形式有多种。常用的有针阀型、三角沟槽型和圆柱削边型等。2a为圆柱削边型阀口构造的节流阀。P为进气口,A为出气口。 2.柔性节流阀 b。其工作原理是依靠阀杆夹紧柔韧的橡胶管2产生变型来减小通道的口径实现节流调速作用的。 3.排气节流阀 排气节流阀安装在系统的排气口处限制气流的流量,一般情况下还具有减小排气噪声的作用,所以常称排气消声节流阀。 2c为排气节流阀的构造原理。节流口的排气经过由消声材料制成的消声套,在节流的同时减少排气噪声,排出的气体一般通入大气。 4.单向节流阀 图13.23为单向节流阀构造原理。其节流阀口为针型构造。气流从P口流入时,顶开单向密封阀芯1,气流从阀座6的周边槽口流向A,实现单向阀功能;当气流从A流入时,单向阀芯1受力向左运动紧抵截止阀口2,气流经过节流口流向P,实现反向节流功能。 (Pneumatic logical control valves) 13.2.1 逻辑控制概述 任何一个实际的控制问题都可以用逻辑关系来进展描述。从逻辑角度看,事物都可以表示为两个对立的状态,这两个对立的状态又可以用两个数字符号“l〞和“0〞来表示。它们之间的逻辑关系遵循布尔代数的二进制逻辑运算法那么。 同样任何一个气动控制系统及执行机构的动作和状态,亦可设定为“1〞和“0〞。例如将气缸前进设定为“l〞,后退设定为“0〞;管道有压设定为“1〞,无压设定为“0〞;元件有输出信号设定为“1〞,无输出信号设定为“0〞等。这样,一个具体的气动系统可以用假设干个逻辑函数式来表达。由于逻辑函数式的运算是有规律的,对这些逻辑函数式进展运算和求解,可使问题变得明了、易解,从而可获得最简单的或最正确的系统。 总之,逻辑控制即是将具有不同逻辑功能的元件,按不同的逻辑关系组配,实现输入、输出口状态的变换。气动逻辑控制系统,遵循布尔代数的运算规那么,其设计方法已趋于成熟和标准化,然而元件的构造原理开展变化较大,自60年代以来已经历了三代更新。第一代为滑阀式元件,可动部件是滑柱,在阀孔内移动,利用了空气轴承的原理,反响速度快,但要求很高的制造精度;第二代为注塑型元件,可动件为橡胶塑料膜片,构造简单,本钱低,适于大批量生产;第三代为集成化组合式元件,综合利用了电、磁的功能,便于组成通用程序回路或者与可编程序控制器〔PLC〕匹配组成气——电混合控制系统。 13.2.2 逻辑元件(Pneumatic logical elements) 气动逻辑元件是用压缩空气为介质,通过元件的可动部件〔如膜片、阀心〕在气控信号作用下动作,改变气流方向以实现一定逻辑功能的气体控制元件。实际上气动方向控制阀也具有逻辑元件的各种功能,所不同的是它的输出功率较大,尺寸大。而气动逻辑元件的尺寸较小,因此在气动控制系统中广泛采用各种形式的气动逻辑元件〔逻辑阀〕。 13.2.3 气动逻辑元件的分类 气动逻辑元件的种类很多,可根据不同特性进展分类。 1.按工作压力 2.按构造型式 元件的构造总是由开关局部和控制局部组成。开关局部是在控制气压信号作用下来回动作,改变气流通路,完成逻辑功能。根据组成原理,气动逻辑元件的构造型式可分为三类: 〔1〕截止式 气路的通断依靠可动件的端面〔平面或锥面〕与气嘴构成的气口的开启或关闭来实现。 〔2〕滑柱式〔滑块型〕 依靠滑柱〔或滑块〕的移动,实现气口的开启或关闭。 〔3〕膜片式 气路的通断依靠弹性膜片的变形开启或关闭气口。 3.按逻辑功能 对二进制逻辑功能的元件,可按逻辑功能的性质分为两大类: 〔1〕单功能元件 每个元件只具备一种逻辑功能,如或、非、与、双稳等。 〔2〕多功能元件 每个元件具有多种逻辑功能,各种逻辑功能由不同的连接方式获得。如三膜片多功能气动逻辑元件等。 13.2.4 主要逻辑元件 13.2.4.1 高压截止式逻辑元件 高压截止式逻辑元件是依靠控制气压信号推动阀心或通过膜片的变形推动阀芯动作,改变气流的流动方向以实现一定逻辑功能的逻辑元件。气压逻辑系统中广泛采用高压截止式逻辑元件。它具有行程小、流量大、工作压力高、对气源压力净化要求低,便于实现集成安装和实现集中控制控制等,其拆卸也方便。 1.或门元件 4为或门元件的构造原理。A、B为元件的信号输入口,S为信号的输出口。气流的流通关系是:A、B口任意一个有信号或同时有信号,那么S口有信号输出;逻辑关系式:。 2.是门和与门元件 5为是门和与门元件的构造原理。在A口接信号,S为输出口,中间孔接气源P情况下,元件为是门。在A口没有信号的情况下,由于弹簧力的作用,阀口处在关闭状态;当A口接入控制信号后,气流的压力作用在膜片上,压下阀芯导通P、S通道,S有输出。指示活塞8可以显示S有无输出;手动按钮7用于手动发讯。元件的逻辑关系为:。 假设中间孔不接气源P而接信号B,那么元件为与门。也就是说,只有A、B同时有信号时S口才有输出。逻辑关系式:。 3.非门和禁门元件 6。在P口接气源,A口接信号,S为输出口情况下元件为非门。在A口没有信号的情况下,气源压力P将阀心推离截止阀座1,S有信号输出;当A口有信号时,信号压力通过膜片把阀芯压在截止阀座1上,关断P、S通路,这时S 没有信号。其逻辑关系式:。 假设中间孔不接气源P而接信号B,那么元件为禁门。也就是说,在A、B同时有信号时,由于作用面积的关系,阀芯紧抵下截止阀口1,S口没有输出。 在A口无信号而B口有信号时,S有输出。A信号对B信号起制止作用,逻辑关系式:。 4.或非元件 如图13.27,或非元件是在非门元件的根底上增加了两个输入端,即具有A、B、C三个信号输入端。在三个输入端都没有信号时乐天堂•体育(FUN88)官方app下载,P、S导通,S有输出信号。当存在任何一个输入信号时,元件都没有输出。元件的逻辑关系式:。 或非元件是一种多功能逻辑元件,可以实现是门、或门、与门、非门或记忆等逻辑功能。 表13-1 或非元件组合可实现的逻辑功能。 是 门 或 门 与 门 非 门 双 稳 5.双稳元件 双稳元件属于记忆型元件,在逻辑线路中具有重要的作用。图示13.28为双稳元件的工作原理。 当A有信号输入时,阀芯移动到右端极限位置,由于滑块的分隔作用,P口的压缩空气通过S1输出,S2与排气口T相通;在A信号消失后B信号到来前,阀芯保持在右端位置,S1总有输出;当B有信号输入时,阀芯移动到左端极限位置,P口的压缩空气通过S2输出,S1与排气口T相通;在B信号消失后A信号到来前,阀芯保持在右端位置,S2总有输出;这里,两个输入信号不能同时存在。元件的逻辑关系式为:; 。 13.2.4.2 高压膜片式逻辑元件 高压膜片式逻辑元件是利用膜片式阀芯的变形来实现其逻辑功能的。最根本的单元是三门元件和四门元件。 1.三门元件 图示13.29为三门元件的工作原理。它由上、下气室及膜片组成,下气室有输入口A和输出口S,上气室有一个输入口B,膜片将上、下两个气室隔开。因为元件共有三个口,所以称为三门元件。A口接气源〔输入〕,S口为输出口,B口接控制信号。假设B口无控制信号,那么A口输入的气流顶开膜片从S口输出,如图13.29b;如S口接大气,假设A 口和B口输入相等的压力,由于膜片两边作用面积不同,受力不等,S口通道被封闭,A、S气路不通。假设S口封闭,A、B口通入相等的压力信号,膜片受力平衡,无输出,13.29d。但在S口接负载时,三门的关断是有条件的,即S口降压或B口升压才能保证可靠地关断。利用这个压力差作用的原理,关闭或开启元件的通道,可组成各种逻辑元件。其图形符号如图13.29e。 2.四门元件 0。膜片将元件分成上、下两个气室,下气室有输入口A和输出口B,上气室有输入口C和输出口D,因为共有四个口,所以称之为四门元件。四门元件是一个压力比拟元件。就是说膜片两侧都有压力且压力不相等时,压力小的一侧通道被断开,压力高的一侧通道被导通;假设膜片两侧气压相等,那么要看那一通道的气流先到达气室.先到者通过,迟到者不能通过。 当A、C口同时接气源,B口通大气,D口封闭时,那么D口有气无流量,B口关闭无输出,如图13.30b;此时假设封闭B口,情况与上述状态一样,如图13.30c此时放开D,那么C至D气体流动,放空,下气室压力很小,膜片上气室气体由A输入,为气源压力,膜片下移,关闭D口,那么D无气,B有气但无流量,如图13.0d;同理,此时再将D封闭,元件仍保持这一状态。 根据上述三门和四门这两个根本元件,就可构成逻辑回路中常用的或门、与门、非门、记忆元件等。 13.2.4.3 逻辑元件的选用 气动逻辑控制系统所用气源的压力变化必须保障逻辑元件正常工作需要的气压范围和输出端切换时所需的切换压力,逻辑元件的输出流量和响应时间等在设计系统时可根据系统要求参照有关资料选取。 无论采用截止式或膜片式高压逻辑元件,都要尽量将元件集中布置,以便于集中管理。 由于信号的传输有一定的延时,信号的发出点〔例如行程开关〕与接收点〔例如元件〕之间,不能相距太远。一般说来,最好不要超过几十米。 当逻辑元件要相互串联时—定要有足够的流量,否那么可能无力推动下一级元件。 另外,尽管高压逻辑元件对气源过滤要求不高.但最好使用过滤后的气源,一定不要使参加油雾的气源进人逻辑元件。 13.3气动比例、伺服、数字控制阀〔pneumatic ratio servo numerical control valves〕 工业自动化的开展,一方面对气动控制系统的精度和调节性能等提出了更高的要求,如在高技术领域中的气动机械手、柔性自动生产线等局部,都需要对气动执行机构的输出速度、压力和位置等按比例进展们服调节;另一方面气动系统各组成元件在性能及功能厂都得到了极大的改良;同时,气动元件与电子元件的结合使控制回路的电于化得到迅速开展,利用微型计算OL使新型的控制思想得以实现,传统的点位控制已不能满足更高要求,并逐步被一些新型系统所取代。现已实用化的气动系统大多为断续控制,在和电于技术结合之后,可连续控制位置、速度及力等的电一气伺服控制系统将得到大的开展。在工业较为兴旺的国家电,电一气比例伺服技术、气动位置伺服控制系统、气动力伺服控制系统等已从实验室走向工业应用。本节主要介绍气动电液比例控制阀及气动伺服阀的工作原理。 13.3.1 气动比例控制阀 气动电液比例控制阀是一种输出量与输入信号成比例的气动控制阀,它可以按给定的输入信号连续、按比例地控制气流的压力、流量和方向等。由于电液比例控制阀具有压力补偿的性能,所以其输出压力、流量等可不受负载变化的影响。 接控制信号的类型,可将气动电液比例控制阀分为气控电液比例控制阀和电控电液比例控制阀。气控电液比例控制阀以气流作为控制信号,控制阀的输出参量、可以实现流量放大,在实际系统中应用时一般应与电一气转换器相结合,才能对各种气动执行机构进展压力控制。电控电液比例控制阀那么以电信号作为控制信号。 1.气控比例压力阀 气控比例压力阀是一种比例元件,阀的输出压力与信号压力成比例,如图1为比例压力阀的构造原理。当有输入信号压力时,膜片6变形,推动硬芯使主阀芯2向下运动,翻开主阀口,气源压力经过主阀芯节流后形成输出压力。膜片5起反响作用,并使输出压力信号与信号压力之间保持比例。当输出压力小于信号压力时,膜片组向下运动。使主阀口开大,输出压力增大。当输出压力大于信号压力时,膜片6向上运动,溢流阀芯3开启,多余的气体排至大气。调节针阀的作用是使输出压力的一局部加到信号压力腔.形成正反响,增加阀的工作稳定性。 2.电控比例压力阀 如图2所示为喷嘴挡板式电控比例压力阀。它由动圈式比例电磁铁、喷嘴档板放大器、气控比例压力阀三局部组成,比例电磁铁由永久磁铁l0、线构成。 当电流输入时,线产生微量位移,改变其与喷嘴6之间的距离,使喷嘴6的背压改变。膜片组4为比例压力阀的信号膜片及输出压力反响膜片。背压的变化通过膜片4控制阀芯2的位置,从而控制输出压力。喷嘴6的压缩空气由气源节流阀5供应。 13.3.2 气动伺服控制阀 气动伺服阔的工作原理与气动比例阀类似,它也是通过改变输入信号来对输出信号的参数进展连续、成比例的控制。与电液比例控制阀相比,除了在构造上有差异外,主要在于伺服阀具有很高的动态响应和静态性能。但其价格较贵,使用维护较为困难。 气动伺服阀的控制信号均为电信号,故又称电一气伺服阀。是一种将电信号转换成气压信号的电气转换装置。它是电一气伺服系统中的核心部件。图3为力反响式电一气伺服阀构造原理图。其中第一级气压放大器为喷嘴挡板阀,由力矩马达控制,第二级气压放大器为滑阀。阀芯位移通过反响杆5转换成机械力矩反响到力矩马达上。其工作原理为:当有一电流输入力矩马达控制线圈时,力矩马达产生电磁力矩,使挡板偏离中位〔假设其向左偏转〕,反响杆变形。这时两个喷嘴档板阀的喷嘴前腔产生压力差〔左腔高于右腔〕,在此压力差的作用下,滑阀移动〔向右〕,反响杆端点随着一起移动,反响杆进一步变形,变形产生的力矩与力矩马达的电磁力矩相平衡,使挡板停留在某个与控制电流相对应的偏转角上。反响杆的进一步变形使挡板被局部拉回中位,反响杆端点对阀芯的反作用力与阀芯两端的气动力相平衡,使阀芯停留在与控制电流相对应的位移上。这样,伺服阀就输出一个对应的流量,到达了用电流控制流量的目的。 13.3.3 气动数字控制阀 脉宽调制气动伺服控制是数字式伺服控制,采用的控制阀大多为开关式气动电磁阀,称脉宽调制伺服阀,也称气动数字阀。脉宽调制伺服阀用在气动伺服控制系统中,实现信号的转换和放大作用。常用的脉宽调制伺服阀的构造有四通滑阀型和三通球阀型。图为滑阀式脉宽调制伺服阀原理。滑阀两端各有一个电磁铁,脉冲信号电流轮流加在两个电磁铁上,控制阀芯按脉冲信号的频率作往复运动。 (Valve Terminal) “阀岛〞一词来自德语,英文名为“Valve Terminal〞。德国FESTO公司创造并最先应用。阀岛是由多个电控阀构成,它集成了信号输入/输出及信号的控制,犹如一个控制岛屿。 阀岛是新一代气电一体化控制元器件,已从最初带多针接口的阀岛开展为带现场总线 的阀岛,继而出现可编程阀岛及模块式阀岛。阀岛技术和现场总线技术相结合,不仅确保了 电控阀的布线容易,而且也大大地简化了复杂系统的调试、性能的检测和诊断及维护工作。借助现场总线高水平一体化的信息系统,使两者的优势得到充分发挥,具有广泛的应用前景。 阀岛有多种类型,简述如下。 〔1〕带多针接口的阀岛 可编程控制器的输出控制信号、输入信号均通过一根带多针插 头的多股电缆与阀岛相连,而由传感器输出的信号那么通过电缆连接到阀岛的电信号输入口上。因此,可编程控制器与电控阀、传感器输入信号之间的接口简化为只有一个多针插头和一根多股电缆。与传统方式实现的控制系统比拟可知,采用多针接口阀岛后系统不再需要接线盒。同时,所有电信号的处理、保护功能〔如极性保护、光电隔离、防水等〕都已在阀岛上实现。 〔2〕带现场总线的阀岛 使用多针接口型阀岛使设备的接口大为简化,但用户还必须根 据设计要求自行将可编程控制器的输入/输出口与来自阀岛的电缆进展连接,而且该电缆随着控制回路的复杂化而加粗,随着阀岛与可编程控制器间的距离增大而加长。为克制这一缺点,出现了新一代阀岛——带现场总线的阀岛。 现场总线〔Field bus〕的实质是通过电信号传输方式,并以一定的数据格式实现控制系统中信号的双向传输。两个采用现场总线进展信息交换的对象之间只需一根两股或四股的电缆连接。特点是以一对电缆之间的电位差方式传输的。 在由带现场总线的阀岛组成的系统中,每个阀岛都带有一个总线输入口和总线输出口。这样当系统中有多个带现场总线阀岛或其它带现场总线设备时可以由近至远串联连接。现提供的现场总线阀岛装备了目前市场上所有开放式数据格式约定及主要可编程控制器厂家自定的数据格式约定。这样,带现场总线阀岛就能与各种型号的可编程控制器直接相连接,或者通过总线转换器进展阀接连接。 带现场总线阀岛的出现标志着气电一体化技术的开展进人一个新的阶段,为气动自动化系统的网络化、模块化提供了有效的技术手段,因此近年来开展迅速。 〔3〕可编程阀岛 鉴于模块式生产成为目前开展趋势,同时注意到单个模块以及许多简单的自动装置往往只有十个以下的执行机构,于是出现了一种集电控阀、可编程控制器以及现场总线为一体的可编程阀岛,即将可编程控制器集成在阀岛上。 所谓模块式生产是将整台设备分为几个根本的功能模块,每一根本模块与前、后模块间按一定的规律有机地结合。模块化设备的优点是可以根据加工对象的特点,选用相应的根本模块组成整机。这不仅缩短了设备制造周期,而且可以实现一种模块屡次使用,节省了设备投资。可编程阀岛在这类设备中广泛应用,每一个根本模块装用一套可编程阀岛。这样,使用时可以离线同时对多台模块进展可编程控制器用户程序的设计和调试。这不仅缩短了整机 调试时间,而且当设备出现故障时可以通过调试出故障的模块,使停机维修时间最短。 〔4〕模块式阀岛 在阀岛设计中引人了模块化的设计思想,这类阀岛的根本构造是: l〕控制模块位于阀岛中央。控制模块有三种根本方式:多针接口型、现场总线〕各种尺寸、功能的电

  一、设备参数 (一)擦窗机设计必须满足下面说明要求 建筑物外墙的维修.pdf

  原创力文档创建于2008年,本站为文档C2C交易模式,即用户上传的文档直接分享给其他用户(可下载、阅读),本站只是中间服务平台,本站所有文档下载所得的收益归上传人所有。原创力文档是网络服务平台方,若您的权利被侵害,请发链接和相关诉求至 电线) ,上传者

在线客服
联系电话
全国免费咨询热线 +86 0000 88888
  • · 专业的设计咨询
  • · 精准的解决方案
  • · 灵活的价格调整
  • · 1对1贴心服务
在线留言
回到顶部
网站地图